Advanced Solid Sorbents and Process Designs for Post-Combustion CO₂ Capture

RTI International Luke Coleman, Atish Kataria, Marty Lail, <u>Thomas Nelson</u>, Jian-Ping Shen

Pennsylvania State University Eric Fillerup, Chunshan Song, Dongxiang Wang, Xiaoxing Wang

July 09, 2012

Copyright © 2012 RTI. All rights reserved

Project Overview

Overall objective: to develop an advanced solid sorbent CO_2 capture technology based on novel, amine-based (PEI) sorbent and demonstrate a potential to achieve DOE's CO_2 capture targets of >90% CO_2 capture with <35% increase in cost of electricity

Project Details

- Combination of two previously funded DOE projects
- Project Cost: \$3,847,161
 - DOE Share: \$2,997,038
 - Cost Share: \$850,123
- Period of performance: 10/1/2011 to 9/30/2014
- Prime Recipient: RTI International

Project Objectives

- Improve stability and performance of novel amine-based (PEI)
 "Molecular Basket Sorbent" and make sorbents applicable for RTI's fluidized, moving-bed reactor design (FMBR)
- Improve reactor design; optimize operability & heat integration
- Conduct prototype testing and prove that the technology reduces parasitic energy load and capital and operating costs associated with CO₂ capture (economic study)

	PENN <u>State</u>		FOSTER	
Project managementProcess designFluidized-bed sorbent	 PSU's EMS Energy Inst PEI and sorbent improvement 	 Masdar Carbon Masdar Institute NGCC application 	 Techno-economic evaluation Process design support 	 Sorbent scale-up Commercial manufacture evaluation

RTI's Center for Energy Technology (CET)

- RTI International was established in 1958 in RTP, North Carolina
- One of the world's leading research institutes
- Mission: To improve the human condition by turning knowledge into practice
- CET develops advanced energy technologies to address some of the world's great energy challenges

Advanced Gasification

- Syngas cleanup/conditioning
- Substitute natural gas production

CO₂ Capture & Conversion

- Post-combustion CO₂ capture
- Pre-combustion CO₂ capture
- CO₂ conversion

Water & Energy

- Industrial water reuse
- Energy and waste heat recovery

Biomass & Biofuels

- Biomass gasification
- Pyrolysis to biocrude and conventional fuels

Fuels & Chemicals

- Syngas conversion
- Hydrocarbon desulfurization

Shale Gas

- Gas separation & processing
- Process water treatment

RTI's Johnson Science and Engineering Building Home of RTI's Center for Energy Technology

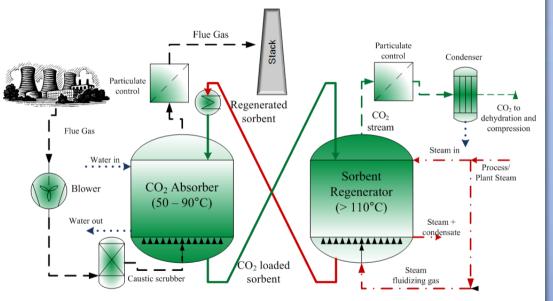
Project Roles

- Project co-funding partner
- Providing engineering expertise to evaluate technology feasibility and potential application to natural gas-fired plants
- R&D efforts focused on parallel development of technology for natural gas application

Memorandum of Understanding

- DOE & Masdar signed MoU in 2010 to promote collaboration on clean/sustainable energy technologies
- Cooperation in three key areas: Carbon Capture & Sequestration; Water & Biofuels; Building Technology

Masdar


Masdar Overview

- Established in 2006, based in Abu Dhabi, United Arab Emirates
- Commercially-driven enterprise that aims to reach the broad boundaries of the renewable energy and sustainable technology industry and help drive the development of clean fossil fuel energy technologies
- Operates through five integrated units:
 - Masdar Carbon · Masdar Institute · Masdar Capital · Masdar Power · Masdar City
- Masdar Carbon's flagship initiative involves the development of a large-scale CCUS network in Abu Dhabi
- Masdar Institute is an independent, research-driven graduate university, partnered with MIT

Challenges

Engineering a Sorbent-based CO₂ Capture Process

- Heat management is still critical; need for heat integration
- Water management is critical to avoid condensation
- Pressure drop needs to be controlled
- Process design has not been evaluated experimentally

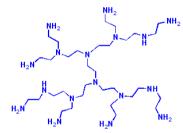
Notes from engineering study / experience in field

- Sorbent working capacity must be sufficient (8+ wt% CO₂) to control sorbent transport demands and scale of process
- Heat generated during capture leads to large temperature excursions in Absorber and reduced capture efficiency
- Sorbents have low C_p unlike aq. amine solvents, this internal heat management systems are necessary
- Commercial-scale fixed-bed processes have inadequate heat removal rates

RTI's Fluidized, Moving-bed Reactor process concept:

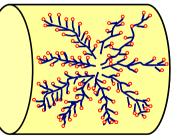
- Minimizes # of process vessels and sorbent load
- Superior gas-solid heat and mass transfer characteristics
- Minimizes thermal regeneration energy
- Reduced pressure drop once bed is fluidized
- Counter current gas-solids flow maximizes CO₂ driving force
- Minimizes sorbent attrition by avoiding entrained-bed mode
- Commercial embodiments of equipment

PSU's MBS CO₂ Absorbing Material



+ $H(CH_2-CH_2-NH)_n$

CO2-philic Polymer (e.g. Polyethylenimine)


Nano-porous Material

Challenges

Polyethylenimine (PEI)

"Molecular Basket" Sorbent (MBS)

Immobilize PEI into Nano-Pore

- Poor performance stability above 90°C
- Currently in powdered or fixed-bed form
- Too costly (uses mesoporous silica supports)

Polymeric amines have high density of CO₂ absorbing sites. Sorbent carbamate chemistry:

Primary: $CO_2 + 2RNH_2 \rightleftharpoons NH_4^+ + R_2NCOO^-$ Secondary: $CO_2 + 2R_2NH \rightleftharpoons R_2NH_2^+ + R_2NCOO^-$ Tertiary: $CO_2 + 2R_3N \rightleftharpoons R_4N^+ + R_2NCOO^-$

PSU has been working in field for ~10 years (Dr. Chunshan Song's research group)

PSU's Molecular Basket Sorbent (MBS) material is one of the most promising impregnated amine sorbents:

- High CO₂ loadings (>14 wt% CO₂)
- High CO₂/N₂ selectivity (> 1000)
- Reasonable heat of absorption (66 kJ/mol)
- Utilizes CO₂-philic polymer, polyethyleneimine (PEI)

Center for Energy Technology

Sorbent Stability

- Explore cross-linking agents
- Different PEIs and strengthening PEI-support bond
- Support surface modification

Sorbent Form

- Convert existing MBS platform to a fluidizable and attrition-resistant material
- Explore impregnation, spray drying, and binders

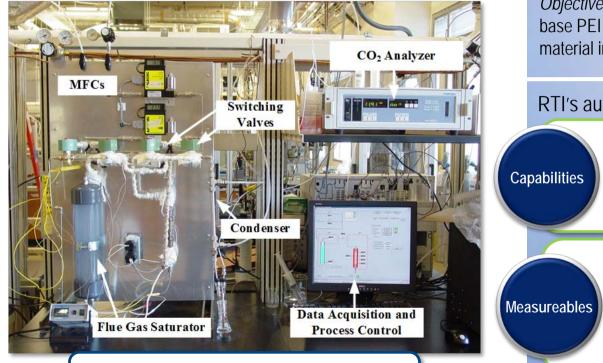
Sorbent Cost

- Utilize low-cost, commercially-available supports
- Work with Süd-Chemie to devise low-cost commercial manufacturing techniques

Design Effectiveness

- Explore commercial embodiments of equipment
- Kinetic and equilibrium testing for detailed design
- Detailed CFD modeling

Economics

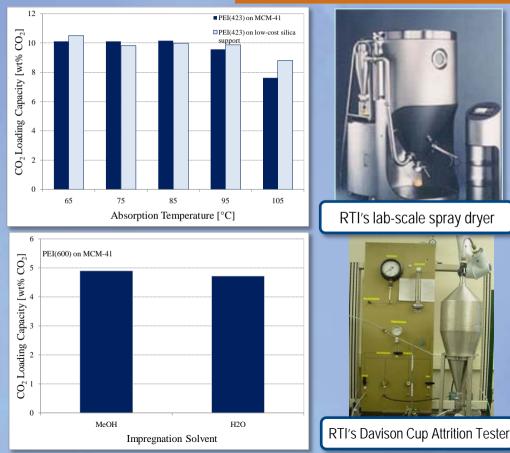

- True economic potential of combined (MBS + FMBR design) has not yet been studied
- Conduct rigorous techno-economic evaluation

Project Schedule, Work Plan, Milestones

10/1	/11	12/31	3/31/12	6/30	9/30
Task 1: Project Management and Planning					
Task 2: Preliminary Technology Feasibility Study					
Task 3: PEI Improvement and Fluidized-bed Sorbent Development					
Task 4: Fluidized-bed Modeling and Contactor Design					

Milestone / Criteria	Status
 Complete preliminary technolohy feasibility study Results improve upon SOTA and show potential to meet DOE targets 	Complete
 Successful scale-up of fluidized-bed MBS material 15 kg of sorbent produced having same properties as lab-scale 	Delayed, but in-progress
 Working multi-physics, CFD model of FMBR design Elicit effects of process elements on CO₂ capture, heat/mass transfer 	In-progress
 Fabrication-ready design package for single-stage FMBR unit Complete engineering drawings, cost estimate, and schedule 	On schedule

Testing Equipment


RTI's Fully Automated, Packed-Bed Reactor System for Multi-cycle CO₂ Capture-Regeneration Testing *Objective:* Improve the thermal and chemical stability of base PEI reactant while transitioning fixed-bed MBS material into a fluidizable form

RTI's automated packed-bed reactor systems

- Fully-automated operation, data analysis
- Multi-cycle, absorption-regeneration experiments
- Rapid sorbent screening experiments
- Comprehensive parametric evaluation
- Long-term effect of contaminants
- Dynamic CO₂ loading capacity
- Rate of CO₂ loading on sorbent (wt%/min)
- Thermal waves due to absorption or desorption
- Pressure drop across packed bed
- PBR #1 sorbent screening
- PBR #2 multi-cycle stability testing

Towards producing a low-cost, attrition-resistant sorbent

Motivation

- Need new support that is low-cost, fluidizable & attrition-resistant
- Need preparation method that is feasible for commercial scale-up

Methodology

- Screened 20+ commercially-available, low-cost support materials, Tested with automated, packed-bed absorption system
- Modified preparation procedure

- Identified a low-cost support material yielding a sorbent with comparable performance to expensive, mesoporous silica
 - Cost of MCM-41: on the order of \$1,000/kg
 - Cost of low-cost alternative: < \$5/kg
- Low-cost support is also more amenable to forming a strong, attrition-resistant, fluidizable particle
- Demonstrated that water can replace methanol (or any alcohol) as the PEI impregnation solvent

Center for Energy Technology

Conditions	Absorption	Regeneration					
Temperature [C]	65	110-125					
Gas Composition [vol%]	13.3% CO ₂ , 5% H ₂ O, 2.35% O ₂ , bal. N ₂	0-100% CO ₂ ,0-5% H ₂ O, bal. N ₂					
GHSV [h ⁻¹] 3,000 3,000							
Fresh sorbent for each regeneration temperature							

100 +110 °C 90 Fractional Dynamic Loading Capacity [%] -115 °C **R&D** Direction **→**120 °C 80 ←125 °C 70 60 50 40 30 20 10 0 0.1 0.0 0.2 0.3 0.4 0.6 07 0.8 0.9 1.0

CO₂ Partial Pressure (bar)

Regeneration Under Realistic Conditions

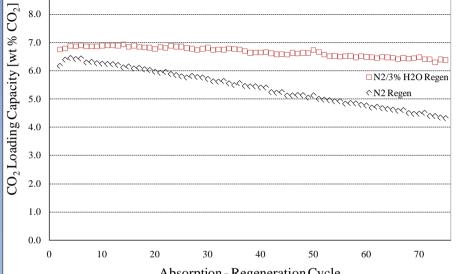
Evaluated effect of regeneration temperature and CO₂ partial pressure on dynamic loading capacity

Motivation

 Need to avoid, to the greatest extent possible, high concentration steam sweep or vacuum regeneration

Methodology

- Automated, packed-bed absorption system
- Sorbent cycled between abs. and regen. conditions with increasing CO₂ content in the regen. gas
- Fresh sorbent sample used for each regen. Temperature


- Increasing P_{CO2} has a significant detrimental effect on the dynamic loading capacity of the sorbent
- Increasing the regen. temperature drastically improves the dynamic loading capacity

10.0

9.0

Absorption - Regeneration Cycle

Conditions	Absorption	Regeneration					
Temperature [C]	75	105					
Gas Composition [vol%]	13.3% CO ₂ , 5% H ₂ O, 2.35% O ₂ , bal. N ₂	a. 3% H ₂ O, bal N ₂ b. 100% N ₂					
GHSV [h ⁻¹] 3,000 3,000							
Fresh sorbent was used for each experiment							

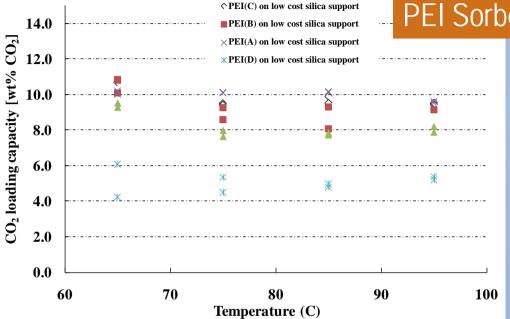
Determine the effect of moisture in regeneration gas on long-term performance stability

Motivation

Explore operating conditions to improve sorbent stability

Methodology

- Automated, packed-bed absorption system
- 75 abs. and regen. cycles at prescribed conditions


Results

- Addition of a small amount of moisture to the regen. gas dramatically improves the multi-cycle performance stability
- Similar findings to the Sayari (UofO) and Jones (GIT) groups
- Improvement most likely related to reducing the formation of thermally-stable urea under regeneration condition

• $2RNH_2 + CO_2 \leftrightarrow RNH-CO-NHR + H_2O$

 Observed reduction in carbonyl peak for sample regenerated in H₂O/N₂ using DRIFTS

Center for Energy Technology

Conditions	Absorption	Regeneration		
Temperature [C]	Varied	110		
Gas Composition [vol%]	14.8% $\rm CO_2$, 5.7% $\rm H_2O$, 2.61% $\rm O_2$, bal. $\rm N_2$	$2.5\%H_2O,balN_2$		
GHSV [h-1]	3,000	3,000		

PEI Sorbent Performance – PEI Type

Determine the effect of different PEI types on sorbent CO₂ capture performance

Motivation

Baseline PEI(423) may not be suitable for commercial use

Methodology

- Automated, packed-bed absorption system
- Single abs. and regen. cycle at different temperatures

- Sorbent CO₂ capture performance can vary widely as a result of using different PEI types
- Identified most promising PEI types for further screening

PEI Sorbent Stability – PEI Type

	14.0%	۲۰-				- · - · - · -						
6 CO2	12.0%		🏷	- <u>(</u> ,	<u> </u>	<u> </u>	<u>~</u>					
[wt9	10.0%		·-@-·	- 🖸	🖸				-6-	- 🔁 - ·		-• 🖸
acity	8.0%				- · - · - · -		·-··-	aseline				
Cap	6.0%					- · - · - · -				- · - · - ·		
CO2 Loading Capacity [wt% CO2]	4.0%						۲ ل	EI(E) o	n Iow-(cost su	ipport	
02 L(2.0%					- · - · - · -			- · - · - ·			
ŭ	0.0%											
		0	1	2	3	4	5	6	7	8	9	10

Absorption-Regeneration Cycle

Conditions	Absorption	Regeneration
Temperature [C]	90	120
Gas Composition [vol%]	100% CO ₂	100% N ₂

Evaluate a promising new PEI type for improved sorbent thermal stability

Motivation

 Alternative PEIs and preparation procedure must lead to improved sorbent stability

Methodology

- Abssorption and regeneration cycling using thermogravimetric analyzer (TGA)
- Prepared new sorbent sample using PEI type PEI(E) on low-cost silica support

- Significant thermal stability improvement over 10 cycles at 120°C regeneration compared to baseline sorbent
- Slightly lower starting CO₂ capacity

Preliminary Technology Feasibility Study¹

Methodology	 Detailed PFDs of combined CO₂ capture and compression systems and major process components AspenPlus[®] to develop simulations and complete stream tables (assumptions and experimental data used) Detailed process equipment lists, consumables, and sizing using Aspen Process Economic Analyzer (PEA) Equipment cost estimates, operating costs, parasitic power load, levelized COE using Aspen PEA and quotes 							
Highlights	 Highlights Developed detailed estimates for a) parasitic power loss, b) levelized cost of power and steam, c) itemized installed equipment costs, d) cost of CO₂ capture, e) percent decrease in plant efficiency Estimated increase in cost of electricity ~ 50% with potential to reduce further through a) reactor refinements, b) sorbent cost reduction, c) improve sorbent strength, d) heat integration strategies, e) alternative SO₂ Compared to SOTA MEA process, a) ~ 40% less steam consumption, b) ~5 point improvement in decreased plant efficiency, c) ~45% improvement in cost of CO₂ capture 							
Sensitivity Analyses	 Sorbent loss rate, price, capacity Alternative SO_x removal processes Stripping steam demand Reactor design based on equilibrium- limited kinetic model Kinetic/equilibrium studies Long-term contaminant studies Study effects of particle size Detailed design study of FMBR 							

¹Basis: Attachment 3 – "Basis for Technology Feasibility Study" of the Funding Opportunity Announcement, DE-FOA-0000403

Plans for Future Development

	Pre	Previous Work			Current F			avalang	oont	
Yr		< 2011			2011-	14		Future D	eveloph	lent
TRL	1	2	3	5	4	5	6	7	8	9
interaction Improves Continue	Laboratory Validation Improve stability by increasing PEI-support interaction Improve stability through novel cross-linking methods Continue developing method to convert support powders to fluidizable particles Relevant Environment Validation					ent Validation	 Prototype Testing Sorbent scale-up to 1,000+ lbs Prototype system shakedown testing at R natural gas-fired facility Prototype system long-term testing at coa fired UNC power plant (~ 1 ton/day CO₂) 			ig at coal-
 Design b manager 	ench-scale FM nent system	CFD simulations BR and internal conomic/process	heat	 Ben Den suff opti Deta 	bent scale-up to 300 lbs ich-scale testing of sing nonstrate that heat tran icient fluidization are es mal performance ailed design and engine ch-scale prototype	le-stage contactor sfer internals and sential for achieving	 Sor eml Det higt 	ture) bent optimization t bodiment ailed techno-econd n confidence level et ICOE target of <	omic study s that technol	showing

Prototype Testing and Beyond

RTI's Central Utility Plant (CUP)

- ~ 5 MW_t boiler Natural Gas-fired
- 13,800 lbs/hr steam production
- CO₂ produced: ~ 25 TPD

UNC-Chapel Hill Co-Generation Power Plant

- Generates steam and electricity
- Coal Feed: ~ 50,000 lbs/hr
- CO₂ Produced: 1500 TPD

Future Development							
2014 - 16 2016-19 2020+							
TRL-6	7	8	9				

Pilot Validation (2014 – 2016)

- 5 MW (eq) pilot-scale testing at coal-fired utility
- > 100 ton/day CO_2 capture

Demonstration (2016 – 2019)

50 -100 MW (eq) pre-commercial scale testing

Commercial (2020+)

Prototype testing objectives

- Demonstrate long-term stability and performance of MBS-based sorbent and FMBR process with actual coal-fired flue gas
- Shakedown and troubleshoot at RTI
- Parametric and long-term testing (1,000 hrs) at UNC's power plant. Sorbent scale-up

Acknowledgements

- The R&D work presented herein was made possible through funding by:
 - The U.S. DOE/National Energy Technology Laboratory (Project # DE-FE0007707)
 - Masdar (Abu Dhabi Future Energy Company)
- We would like to thank our various team members for their valuable contributions to the project

RTI	PSU	Masdar Carbon	Masdar Institute	DOE/NETL
 Laura Douglas Joshua Herr Jak Tanthana Matthew Von Holle 	 Wenying Quan 	 Paul Crooks Mayuram Balasubramanian Maitha Al Mansoori 	 Mohammad Abu Zahra Adel Seif El Nasr 	 Bruce Lani

